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This study introduces a computational simulator designed for materials that morph due to
internal stresses, applied to architectural contexts. This approach marks a significant
evolution in architectural practices, highlighting a shift towards sustainability,
adaptability, and responsiveness in design. These materials present new challenges in
architectural design, necessitating advanced computational tools for form-finding to
predict complex behaviors not easily inferred from initial conditions. Our simulator,
integrated with Grasshopper and using the Kangaroo Physics plugin, aims to enhance
shape-finding processes for these materials, providing reliable shape predictions and
broadening design possibilities. Focusing on anisotropic materials, particularly fiber-
based polymer composites, the simulator enables designers to create structures that can
adapt to various conditions. This capability extends the potential for sustainable and
innovative architectural solutions, moving beyond traditional design constraints to
embrace the complexities of material behavior and interaction.

Utilizing sophisticated algorithms and models, the tool facilitates early simulation and
visualization of materials and structures, bridging theoretical concepts with practical

applications.
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INTRODUCTION

The architectural design field has seen significant
evolution, moving from traditional methods to a
modern approach emphasized by innovative

material usage and precise applications. This
transition towards computational design and
material experimentation marks a notable

development in the creation and construction of
structures (Kolarevic, 2003). This paradigm shift
reflects not only the changing aesthetic and
functional demands of contemporary society but
also underscores a dedication to sustainable and
responsive design principles (Hensel and Menges,

2007). Architecture is set to become as adaptable
and responsive as the environments for which it's
designed.

The interpolation of computational design,
applied physics, and architectural principles calls for
early simulation and visualization of materials and
structures, marrying theoretical concepts with
practical application. Advanced tools, powered by
sophisticated algorithms and physical models, have
become valuable in the design process, allowing for
the creation of structures that are more efficient,
sustainable, and visually striking (Menges, 2012;
Peters, 2013).



In this spectrum of design innovation, one
notable approach involves leveraging self-morphing
materials (Siefert et al, 2020; Blonder and Sharon,
2021). These materials are engineered to respond
adaptively to internal stresses and can also be
referred to as frustrated materials (Blonder and
Sharon, 2020). These developments in self-
morphing materials could transform the design of
architectural facades. Future applications might
involve creating composite surfaces that are initially
flat but can morph into complex shapes on-site,
eliminating the need for traditional molding. This
method offers more design flexibility and reduces
material waste by enabling adaptable and dynamic
exteriors.

Material frustration occurs when materials
experience internal conflicts due to differing
responses to changes, whether internal or external.
This is caused by their internal structure, leading
them to a state where they cannot adopt a single
stress-free configuration, but rather choose one that
minimizes internal stresses, out of several possible
configuration alternatives (Sharon and Efrati, 2010).
This state can endow materials with unique
properties, such as the ability to change shape or
structural  behavior under certain  terms.
Incorporating these materials into architectural
designs presents challenges. Unlike traditional
design processes where outcomes can be directly
deduced from initial conditions, self-organizing
systems introduce complex causality that is difficult
to predict without advanced form-finding
computational tools. Therefore, simulations become
crucial in managing these complexities, offering a
more reliable dependable approach than trial and
error or educated guesses, making it an essential
component of the design process.

Recent attempts have been made to address this
issue, as evidenced by studies (Blonder and Sharon,
2021; Chen et al, 2022; Jourdan, 2023). Existing
codes for forward or inverse design are not adapted,
either because these are crafted for different type of
material systems, or due to high accuracy and
computational load, which not well-suited for

designers. Others provide only a limited set of
functionalities (Blonder and Sharon, 2021),
indicating a gap between current capabilities and
the needs of designers.

The simulator presented here builds upon the
toolintroduced by Blonder & Sharon (2021) and aims
to bridge this gap. The tool, integrated into
Grasshopper and leveraging the Kangaroo Physics
plugin for physics simulations and optimization, is
designed to improve shape-finding processes for
self-morphing  materials and offer reliable
predictions of their final shapes.

We differentiate between isotropic materials,
which have uniform properties in all directions, and
anisotropic materials, whose properties vary by
direction. Our focus in this study is on anisotropic
materials, fiber-based polymer composite, which
can be utilized in architectural and engineering
applications for their engineered nature, customized
to structural requirements, and exceptional ratio of
strength to weight with high durability. This
utilization of fiber-based composites in architecture
not only enables the creation of innovative, fluid
forms that challenge traditional aesthetics but also
enhances building performance in terms of energy
efficiency and environmental resilience. The
versatility of composites allows for their integration
in facades, structural components, and uniquely
designed elements that contribute both functionally
and visually to modern architecture.

This paper outlines the general structure and key
design aspects of the tool in ‘Computation Tool’
section, followed by its validation against relevant
physics theory, detailed in ‘Evaluation’ section. This
concept extends to self-morphing materials in
architecture, focusing on the complex interplay of
anisotropic  characteristics, which inherently
encompasses isotropic properties as well. It enables
the simulation and modeling of structures, allowing
for greater control over their design and
functionality. Utilizing this tool allows for the
creation of architectural forms without relying on
traditional molds by leveraging an enhanced
understanding of material behavior in specific



Figure 1

A sample of fiber-
based composite
from the exhibition
'Creative
Differences' by
'Automorph
Network' presented
at the London
Design Biennale
2023. (‘Creative
Differences’, 2023).
Photo: Haim Zinger

conditions, which in turn widens the range of design
opportunities.

BACKGROUND

Theory of non-Euclidean Plates (NEP)
Recent advancements have led to the development
of active materials programming techniques and
theoretical models for understanding their
distinctive properties. Key among these are
incompatible sheets, like non-Euclidean plates (NEP)
(Efrati et al. 2009; Sharon and Efrati, 2010) and shells
(Armon et al., 2011), characterized by their inherent
non-Euclidean geometry. This inherent material
structure can lead to the build-up of internal stresses
and material frustration that result in the emergence
of a surface of non-Euclidean geometry, highlighting
a unique aspect of material science that explores the
intrinsic spatial configurations of these materials.
Within this theoretical framework, the intrinsic
geometry of a solid is captured by the equilibrium
distances among its constituents. This geometry is
outlined by a reference metric field, a, for in-plane
distances and a reference curvature field, b,
indicating variations through the material's
thickness. Such predefined geometries dictate
unique 3D forms through mathematical and
energetic analysis.

The material's state is determined by its actual
metric a and actual curvature b. Deviations between
the actual and reference geometries bring about
energy costs, manifesting as either stretching or
bending energy. The actual configuration of a
material experiencing frustration finds a balance
between its designed geometry, as prescribed by
internal structure, and developing internal stresses,
leading to an equilibrium of stretching and bending
energies. Any modifications in shape or boundary
cuts can lead to a new equilibrium state, causing a
transformation in its 3D configuration. This final
shape is influenced not only by the material's initial
boundary shape but also by various factors including
its lateral dimensions and thickness, highlighting the
complexity of predicting the behavior of such

materials. This theory elaborates on material
frustration mentioned above, highlighting the
connection between geometric variances and
internal stresses. Such an understanding enables the
creation of complex 3D designs from flat surfaces by
adeptly adjusting distances, building on the
foundational concept of material behavior under
stress. Our simulation tool utilizes a spring model for
energy minimization, making it well-suited for
modeling systems that exhibit material frustration.
This methodology aligns with the principle of
minimizing energetic discrepancies to predict and
shape the final form of frustrated materials.

The Material System

Composite materials is a family of materials
comprised of advanced fibers such as carbon, glass,
or aramid with polymers like polyester, epoxy, or
vinyl-ester, forming fiber-reinforced polymers (FRP).
This combination enhances mechanical properties,
widely applied in various industries, especially
construction  (Mallick, 2007; Hollaway, 2010).
Frustrated composites (FC), first introduced in
(Blonder and Sharon, 2021), are based on fiber
composites undergoing self-morphing process;
these are formed by the construction of unbalanced
laminates, purposely laminating pre-impregnated

unidirectional fabric layers in different orientations
(see example in Figure 1).



The composites’ curing process induces
shrinkage in the resin (by approximately 3-5% for
epoxy resin), while fiber shrinkage is negligible, and
the shrinkage is uniaxial in a perpendicular direction
to fiber orientation. Along with curing-induced
shrinkage, variations in coefficient of thermal
expansion upon cooling contribute to internal
incompatibilities.  This  differential  shrinkage,
typically avoided in FRP by designing balanced
laminates to eliminate internal torque (Nairn, 1985),
is harnessed in FC to induce internal stresses, thus
creating complex shapes. Instead of minimizing
differential shrinkage, our strategy leverages it for
creative design possibilities.

(b)
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This involves segmenting the surfaces to be
created allowing each segment to differ in thickness
and fiber orientations. This segmentation leads to

various curvature amount and orientations,
transitioning from uniform surfaces towards more
complex shape formations. For examples of surface
segmentations utilizing different fiber orientations,
see Figure 2.

Existing Simulation Tools

While there are physical simulation tools available,
they often do not meet the design community's
requirements for creating complex shapes. The need
fora design interface capable of generating complex
surfaces based on theoretical principles is essential
for moving into the architectural field. A recent
simulation tool showed promise (Blonder and
Sharon, 2021) but was limited in computational
performance, accuracy, and design freedom. This
referred tool elaborates on representing physical
objects as a mesh of 'rods' in Rhinoceros 3D software
through Grasshopper platform, simulating self-
morphing materials using Kangaroo Physics plug-in
for energy minimization. This tool models the
lengths of 'rods' as springs with predefined
properties, including axial and bending stiffness, to
represent the rods' resistance to elongation and
bending. It's important to note that these values are
dimensionless and do not directly correspond to
physical material data like Young's modulus,
Poisson's ratio, or density. It then minimizes energy
to find an optimal solution (Piker, 2019). However,
the tool was limited to quad mesh with fiber
orientations of 0, 45, and 90 degrees. Our aim is to
extend these capabilities, offering a continuous
range of fiber orientations, supporting various
surface shapes and, including free-form options for
an accessible and enabling interface for the
designer. With that, we lay the groundwork for a
simulation tool that supports varying thicknesses
within a single input. The paper details the construct
of the computational tool and describes its
validation against theoretical principles.

COMPUTATIONAL TOOL
In this section, we detail our simulation tool, which
integrates theoretical physics with computational

Figure 2

lllustrates surface
segmentations and
their varying fiber
orientations.

For each surface
segmentation, the
first column details
the boundary
shape and fiber
orientation of a
given layer before
simulation-driven
morphing, while
the second column
displays the
resultant shape
post-simulation.

(a) Displays a plate-
shaped surface
with a consistent
fiber orientation.
(b) Pixelated ribbon
shape with diverse
fiber orientations.
(c) Free-form shape
with adaptive
subdivision and a
range of fiber
orientations,
referred to as
'Adaptive Pattern'.



Figure 3

Illustrates the input
and output mesh
process.

(a) User-defined
fiber patterns for
top and bottom
layers.

(b) Constructed
mesh derived from
the top and bottom
layers' fiber
patterns.

(c) Mesh after the
self-morphing
simulation.

methods, implemented through the Grasshopper
platform and the Kangaroo Physics plugin.

From Physical

Material to Geometrical Mesh

Our focus is on robust modeling both isotropic and
anisotropic materials. However, our approach
emphasizes capturing the behavior of these
materials rather than replicating them. For isotropic
materials, we use a pseudo-random mesh-based
model to minimize orientation effects, identifying
three key regions: top layer, middle web, and bottom
layer. Connections between the top and bottom
vertices form the middle web.

Bottom Layer: Fiber Pattern Top Layer: Fiber Pattern

Input Mesh

Output Mesh

In anisotropic modeling, we simulate the directional
properties of fibers within composites on given
surfaces, establishing mesh edges in orthogonal
orientations to represent the fibers and matrix
shrinkage directionality upon curing. These edges
are then represented as rods in Kangaroo Physics for
simulation. Connections between layers similarly
create the middle structure, reflecting the
composite's internal makeup.

This approach models materials to closely
resemble their real-world behaviors. It utilizes a
triangular mesh to mirror the randomness in
isotropic materials and represents the directional
fiber-matrix changes in anisotropic materials. This
allows for the use of non-uniform meshes with
various fiber orientations, enabling the simulation of
complex structures as shown in Figure 3.

Generalization of Simulation Tool

Focusing on anisotropic mode we identify two
distinct approaches within the anisotropic
framework: the pixelization mode and the adaptive
pattern mode. These two segmentation modes aim
to mirror two different fabrication processes for
complex surfaces, by sub-division of the panel into
patches of different fiber orientation. In the
pixelization mode, morphing is finely tuned by
segmenting the surface into a uniform rectangular
grid, each patch with its own fiber orientation,
adjustable by the user. In the adaptive pattern mode,
users have the opportunity to divide the input
surface into non-regular regions, with each region
assigned a different fiber orientation as part of a
comprehensive optimization of the entire surface.
The developed tool then constructs the mesh
according to the panel's subdivided structure,
facilitating forward simulation and providing design
flexibility.

User Input

Across all modes, user can choose from three source
shapes for a 2D surface: Plate, Ribbon, and Free-
Form. Plate and Ribbon offer insights into material
behavior under specific physics parameters, serving



as baselines, while Free-Form is designed for more
complex experiments. After selecting the source
type, the user defines the shape, size, and thickness,
then selects the mode (isotropic or anisotropic) and,
if anisotropic, also chooses between pixelization or
adaptive pattern.

For the isotropic mode, the user inputs
shrinkage factors for both the top and bottom layers,
along with axial and bending factors for all layers.

These factors can be calibrated against physical
data and material properties, such as translating the
shrinkage factor, axial stiffness, and bending
stiffness of different materials into the rods' length
factor, axial factor, and bending factor, applicable to
both isotropic and anisotropic systems, as
exemplified by (Dar et al., 2024). In the pixelization
mode, in addition to the physics factors mentioned
for the isotropic mode, users can also set the
pixelization resolution through the number of rows
and columns in the grid forming the surface. Each
pixel, or square (represented as a matrix entry),
requires a specified fiber orientation by the user. In
the adaptive pattern mode, beyond the physics
factors and fiber orientation, user provide cutter
curves instead of grid dimensions, which define how
the source surface is segmented into irregular
shapes, offering a customized approach to
modeling.

Optimization Process

For the numerical simulation of self-morphed 2D
surfaces, we utilize Rhinoceros 3D's parametric
design tool, Grasshopper, incorporating the
Kangaroo Physics plugin. This approach allows us to
closely emulate the mechanical properties of a
surface by adjusting its properties to minimize
elastic energy. Kangaroo Physics typically models
the linear elastic region of a material (Cheraud,
2020), but by integrating specific elasticity modulus
values, including accurate relative bending and axial
stiffness between rods representing fibre or matrix,
we can significantly improve the precision of our
simulations due to the detailed variation in material
behaviors.

EVALUATION

To validate our simulation tool against theoretical
principles, we selected four experimental setups as
benchmarks, illustrated in Figure 4. The first setup,
designed to validate the thickness-curvature
relationship, is a two-layered ribbon with
perpendicular fiber orientations—0 degrees for the
bottom layer and 90 degrees for the top, measuring
4x10 cm with a thickness ranging from 0.1-1 cm.
Here, the bottom layer is inert, showing no
shrinkage, while the top layer experienced a 10%
shrinkage rate. In the second experiment, the same
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Figure 4

Top and bottom
fiber patterns for
four setups. Orange
patterns are active
layers with
shrinkage; blue,
passive layers
without. Ribbon
setups measure
4x 10 cm; the
square setup,
10x10cm.



Figure 5

The simulation tool
evaluation results.
(a) Measured
principal curvature
as a function of
thickness in first
(green) and second
(blue) setups.
Theoretical
reference curvature
is plotted in dashed
line.

(b) Curvature of
simulated
frustrated ribbons
as function of
thickness.

setup was used but the ribbon was divided into
segments, maintaining identical fiber orientations.
This verifies that the pixelization process does not
affect the simulation outcomes. The third
experiment mirrored the first, with the difference
being that both layers now experienced the same
shrinkage rate in perpendicular orientations. The
final setup is a non-segmented, 10 x 10 cm square
with a consistent 0.4 cm thickness and identical
shrinkage rate across both layers. However, the top
layer's fiber orientation varies from 0 to 90 degrees,
contrasting with the bottom layer's fixed orientation
of 0 degrees, for the validation of the relation
between fiber angle and curvature.

Measured curvature in a simulated composite
as a function of thickness

| e empirical k

0.141 o e empirical k (pixelate)

% ——- theoretical k

6.121 o}
o \
o \
T | \
£ o \
= \
5 \
© 0.08 A\
2 b
% \
2 0.061 *
3 N

By
.04 ‘~3‘
e
0.02 “‘a‘“--&—-.ﬁ___ 8
0.2 0.4 0.6 0.8 1.0
thickness (cm)
@)

Measured curvature in a simulated frustrated
composite as a function of thickness

o empirical k
——- theoretical k

curvature Kq(mm)~!
®
°
&

0.06 N

<.

S
0.04 °. \\,‘

el
To—a
e.024 . TTEmo S, —
0.2 0.4 0.6 0.8 Lo

thickness (cm)

(b)

Through these four setups, we analyze the radius
of curvature and orientation of curvature to
understand material behavior in this simulation tool.
In our experiments, the actual curvature, k, in its
principal direction, closely aligns with the reference
curvature, k, as a function of active deformation
across the material's thickness, t. These
deformations lead to a significant reference
curvature and maintain flat reference metrics. The
curvature's magnitude is influenced by the material's
thickness and the differential strain, ¢, representing
the variation in deformation between the top and
bottom layers. This is approximately expressed by
the ratio: k ~ &/t (Sharon and Efrati, 2010).
Consequently, the final material shape is determined
by energy minimization for a given reference
curvature field, resulting in an approximate actual
radius of curvature of r = 1/k ~ ¢/t.

Figure 5a illustrates the measured principal
curvature as a function of thickness for ¢ = 0.01,
aligning with typical material shrinking rates (3-5%)
in our material systems. It also compares the
theoretical expected principal curvature
(Timoshenko, 1925). For this study, curvature is
defined using a pre-factor of 1.5 for symmetrical bi-
layer materials. However, for our initial two
experiments, which aim to model edge cases with
maximum curvature, we normalize our results with a
factor of 0.23. This adjustment considers the
consistency in expected trends, allowing for this
factor to be determined through one-time
calibration for specific material systems. The green
and blue lines represent the measured curvature for
the first and second setups, respectively,
demonstrating the tool's reliability with both
pixelized and non-pixelized inputs.

Figure 5b displays the curvature of simulated
frustrated ribbons in relation to thickness from the
third experiment. It differs from with theoretical
reference curvature for anisotropic materials,
showing that latent energy persists in frustrated
composites.



Figure 6 visualizes the surfaces resulting from
the second setup, showcasing curvature variations
between a thickness of 0.1-1 cm.

Measured curvature in a simulated frustrated
composite as a function of 6

e empirical k °
0.07 4 P

curvature Ki{mm)-!

The curvature's magnitude in our study is
determined by thickness and strain. Likewise, its
orientation is influenced by the strain's principal
direction and the material's anisotropic stiffness. In
systems where anisotropy in stiffness is significant,
the orientation of this stiffness influences curvature

orientation, aligning perpendicularly to the fiber
direction. Our theoretical analysis, supported by
experimental evidence, suggests curvature is
proportional to sin (6/2), where 6 is the relative
fiber angle between layers.

Figure 7 demonstrates the impact of anisotropy
and strain direction on curvature orientation in
simulated frustrated materials, as observed in the
forth setup.

DISCUSSION AND CONCLUSION

This work introduces a new computational simulator
for the exploration and design of self-morphing
materials within architectural contexts. We've
demonstrated how this tool, grounded in the
principles of physics and computational design, and
optimized through Grasshopper and Kangaroo
Physics, offers a bridge between theoretical
knowledge and practical architectural innovation.

Our findings reveal that the simulator's capacity
to model anisotropic materials, especially fiber-
based polymer composites, offers a new avenue for
designing adaptive, efficient, and aesthetically
appealing structures. Through the implementation
of pixelization and adaptive pattern modes, the tool
supports a broad range of design scenarios, from
simple to complex surface shapes, facilitating a
deeperintegration of form, function, and materiality.

Moreover, the experiments conducted to
validate the simulator's effectiveness underscore its
reliability in simulating frustrated materials. By
accurately capturing the intricate relationship
between material properties and geometric
configurations, the tool stands as a pivotal
development in material innovation within
architectural design.

Material parameters will be further calibrated in
the simulation tool through physical experiments of
complex surfaces, both pixelated and adaptive.
Additional design features, such as variable
thickness and material composition across the single
panel will be developed for further design freedom.
Additionally, ongoing work focuses on how the tool
can generate quality data for solving inverse

Figure 6

Illustration of
curvature variations
in the second setup
between a
thickness of 0.1 cm
(maximum
curvature, shown in
white) and 1 cm
(minimum
curvature, shown in
black).

Figure 7

Measured curvature
as a function of
angle of simulated
frustrated squares.



problems, specifically identifying initial conditions to
achieve a desired 3D surface (Kapon, 2024).

In  conclusion, the developed simulator
represents a significant step forward in the
integration of computational design with material
science. It facilitates a deeper exploration of the
potential of self-morphing materials, offering
innovative solutions to contemporary architectural
challenges. Our findings underscore the importance
of simulation tools in the design process, enabling
the realization of complex forms and behaviors that
were previously unattainable.
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